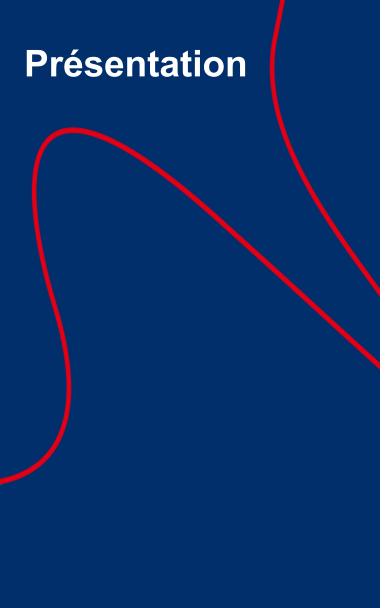


Donnons au sang le pouvoir de soigner


LES GROUPES SANGUINS ET LEUR RÔLE BIOLOGIQUE

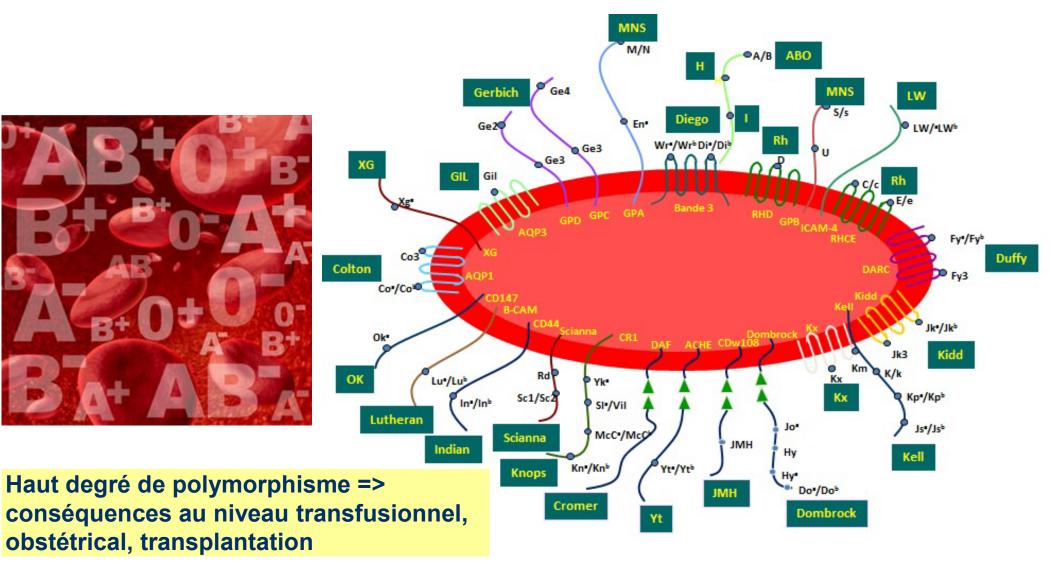
Journée de formation romande, CPNE, Neuchâtel 3 novembre 2023

Dr Thierry Peyrard – Etablissement Français du Sang Île-de-France, Paris

- Directeur médical
- Directeur du Département national de référence en immuno-hématologie et sang rare
- Directeur de recherche, UMR_S1134 « Biologie intégrée du globule rouge », Inserm -Université Paris Cité & Université des Antilles

Absence de liens d'intérêt en rapport avec le contenu de cette présentation

1. Les systèmes et antigènes de groupes sanguins


2. Le rôle biologique des groupes sanguins

3. Pourquoi une telle diversité phénotypique ?

LES SYSTÈMES ET ANTIGÈNES DE GROUPES SANGUINS

LES GROUPES SANGUINS

LES ANTIGÈNES ET SYSTÈMES DE GROUPES SANGUINS

ISBT juin 2023

45 systèmes de groupes sanguins

360 antigènes

50 gènes (plus 2 gènes associés)

Autres familles d'antigènes

Collections : 14 antigènes

Série 700 : 16 antigènes

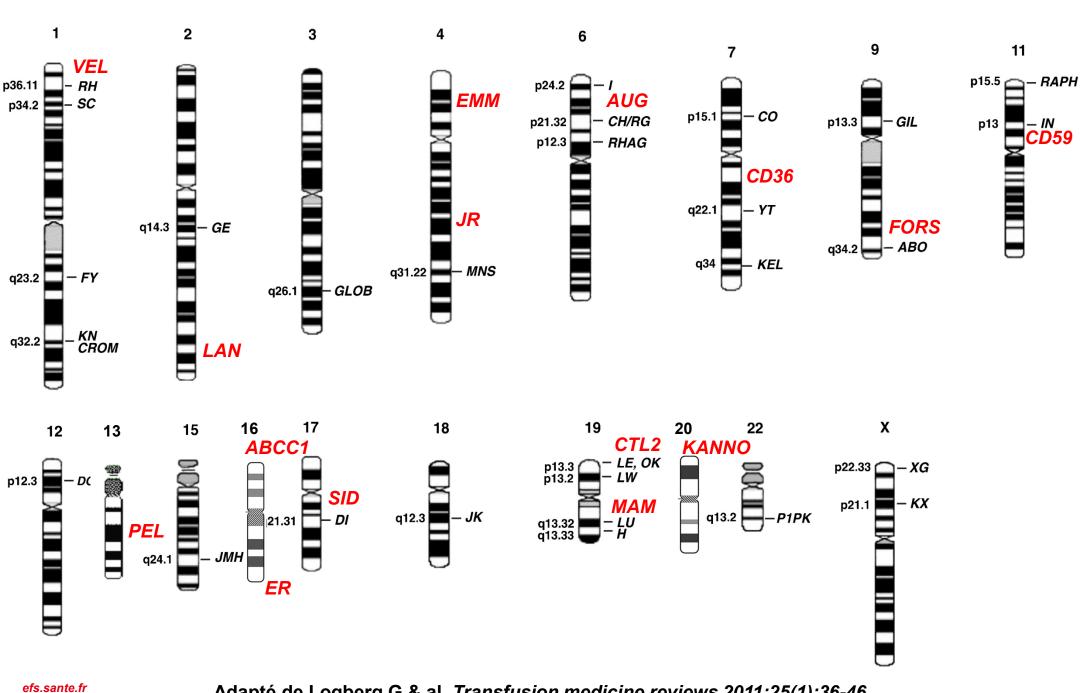
Série 901 : 3 antigènes

=>Total de 390 antigènes érythrocytaires

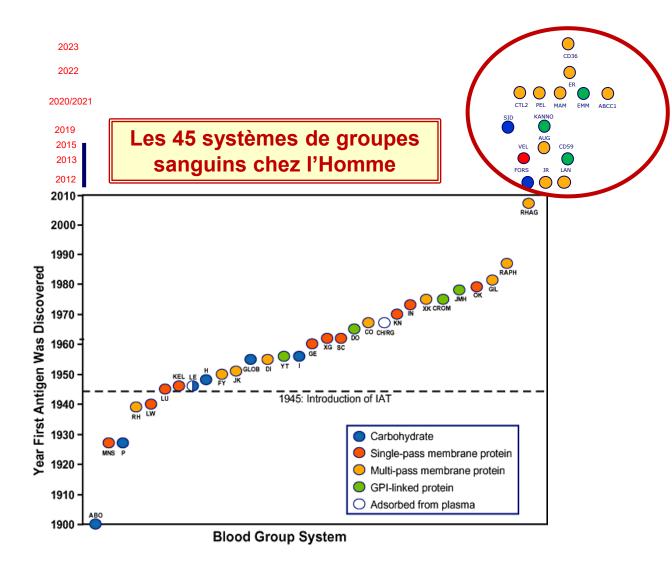
N°	Nom du système	Symbole	Gène(s)	Chromosome	Nombre total d'antigènes	Nombre d'antigènes de prévalence > 99%	Nombre d'antigènes de prévalence < 1%	Nombre d'antigènes de prévalence 1 à 99%
001	ABO	ABO	ABO	9q34.2	4	0	0	4
002	MNS	MNS	GYPA, GYPB, GYPE	4q31.21	50	10	36	4
003	P1PK	P1PK	A4GALT	22q11.2–qter	3	1	1	1
004	Rh	RH	RHD, RHCE	1p36.11	56	14	27	15
005	Lutheran	LU	ВСАМ	19q13.32	28	23	1	4
006	Kell	KEL	KEL	7q34	38	25	11	2
007	Lewis	LE	FUT3	19p13.3	6	0	0	6
008	Duffy	FY	ACKR1	1q23.2	5	3	0	2
009	Kidd	JK	SLC14A1	18q12.3	3	1	0	2
010	Diego	DI	SLC4A1	17q21.31	23	3	20	0
011	Yt	YT	ACHE	7 _q 22.1	6	5	0	1

N°	Nom du système	Symbole	Gène(s)	Chromosome	Nombre total d'antigènes	Nombre d'antigènes de prévalence > 99%	Nombre d'antigènes de prévalence < 1%	Nombre d'antigènes de prévalence 1 à 99%
012	Xg	XG	XG, CD99	Xp22.33	2	1	0	1
013	Scianna	SC	ERMAP	1p34.2	9	7	2	0
014	Dombrock	DO	ART4	12p12.3	10	8	0	2
015	Colton	СО	AQP1	7p14.3	4	3	0	1
016	Landsteiner- Wiener	LW	ICAM4	19p13.2	4	3	1	0
017	Chido/ Rodgers	CH/RG	C4B, C4A	6p21.3	9	3	0	6
018	Н	Н	FUT1	19q13.33	1	1	0	0
019	Kx	XK	XK	Xp21.1	1	1	0	0
020	Gerbich	GE	GYPC	2q14.3	13	8	5	0
021	Cromer	CROM	CD55	1q32.2	20	17	3	0
022	Knops	KN	CR1	1q32.2	13	2	2	9
023	Indian	IN	CD44	11 _p 13	6	5	1	0
024	Ok	ОК	BSG	19 _p 13.3	3	3	0	0

N°	Nom du système	Symbole	Gène(s)	Chromosome	Nombre total d'antigènes	Nombre d'antigènes de prévalence > 99%	Nombre d'antigènes de prévalence < 1%	Nombre d'antigènes de prévalence 1 à 99%
025	Raph	RAPH	CD151	11p15.5	1	0	0	1
026	John Milton JMH Hagen		SEMA7A	15q24.1	8	8	0	0
027	I	I	GCNT2	6p24.2	1	1	0	0
028	Globoside	GLOB	B3GALT3	3q26.1	3	2	0	1
029	Gill	GIL	AQP3	9p13.3	1	1	0	0
030	Rh-associated glycoprotein	RHAG	RHAG	6p21-qter	5	2	4	0
031	Forssman	FORS	GBGT1	9q34.2	1	0	1	0
032	Jr	JR	ABCG2	4q22.1	1	1	0	0
033	Langereis	LAN	ABCB6	2q36	1	1	0	0
034	Vel	VEL	SMIM1	1p36	1	1	0	0
035	CD59	CD59	CD59	11p13	1	1	0	0
036	Augustine	AUG	SLC29A1	6p21.1	4	3	1	0
037	Kanno	KANNO	PRNP	20p13	1	1	0	0
038	Sid	SID	B4GALNT2	17q21.32	1	0	0	1


039	CTL2	CTL2	SLC44A2	19 _p 13.2	2	2	0	0
040	Pel	PEL	ABCC4	13q32.1	1	1	0	0
041	Mam	MAM	EMP3	19q13.3	1	1	0	0
042	Emm	EMM	PIGG	4p16.3	1	1	0	0
043	ABCC1	ABCC1	ABCC1	16p13	1	1	0	0
044	Er	ER	PIEZO1	16q24.3	5	4	1	0
045	CD36	CD36	CD36	7q11.2	1	1	0	0
Total	45 systèmes		50 gènes		360	180	117	63

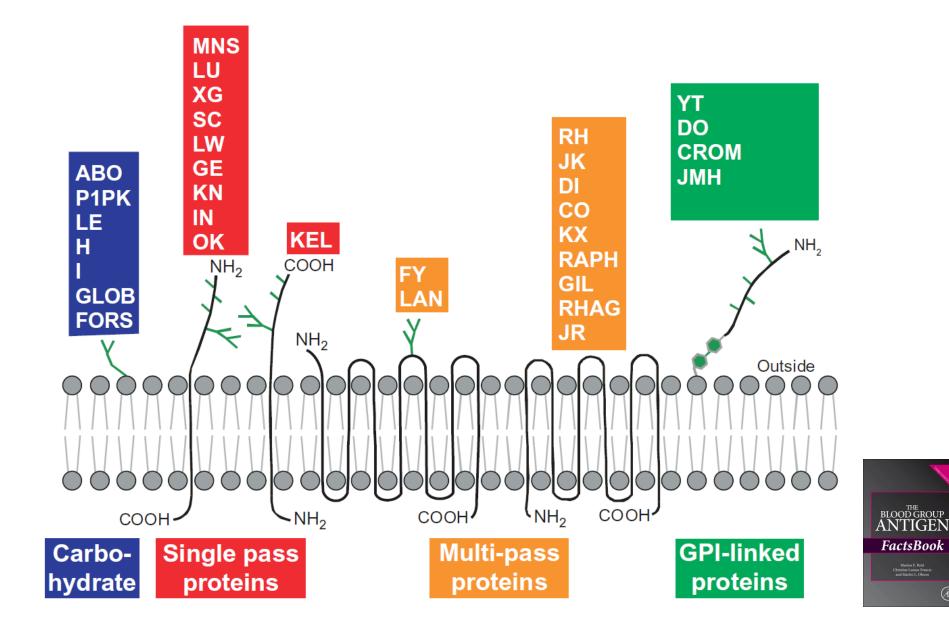
A noter:


✓ Deux gènes de groupes sanguins associés : GATA1 et KLF1

No	Système	Symbole	Gène(s)
032	Jr	JR	ABCG2
033	Lan	LAN	ABCB6
034	Vel	VEL	SMIM1
035	CD59	CD59	CD59
036	Augustine	AUG	SLC29A1
037	Kanno	KANNO	PRNP
038	Sid	SID	B4GALNT2
039	CTL2	CTL2	SLC44A2
040	PEL	PEL	ABCC4
041	MAM	MAM	EMP3
042	ЕММ	EMM	PIGG
043	ABCC1	ABCC1	ABCC1
044	ER	ER	PIEZO1
045	CD36	CD36	CD36

Parmi les 14 derniers systèmes de groupes sanguins découverts depuis 2012, 8 ont été mis en évidence avec les équipes du CNRGS/UMR_S1134 en première ligne : JR, LAN, VEL, AUG, CTL2, PEL, EMM, ABCC1

Adapté de Logberg G & al. Transfusion medicine reviews 2011;25(1):36-46



« Omics »

- NGS (séquençage d'ADN à haut débit)
- Protéomique

Adapté de Daniels G & Reid ME. Blood groups: the past 50 years. Transfusion. 2010;50:281-9

SYSTÈMES DE GROUPES SANGUINS

Collections			Antigènes			
N°	Nom	Symbole	Nº	Symbole	Prévalence %	
205	Cost	COST	205001 205002	Cs ^a (COST1) Cs ^b (COST2)	>98 34	
207	li	I	207002	I (I2)	>99	
208	Er	ER	208001 208002 208002	Er ^a (ER1) Er ^b (ER2) Er3 (ER3)	> 99 < 0.01 > 99	
210			210001 210002	Le ^c Le ^d	1 6	
213	MN CHO	MN CHO	213001 213002 213003 213004 213005 213006	Hu M1 Tm Can Sext Sj	1 5 (24% Africains) 25 27 <1	

Plenary Paper

TRANSFUSION MEDICIN

Missense mutations in *PIEZO1*, which encodes the Piezo1 mechanosensor protein, define Er red blood cell antigens

Vanja Karamatic Crew, ^{1, e} Louise A. Tilley, ^{1, e} Timothy J. Satchwell, ^{2, e, e} Samah A. AlSubhi, ^{1,2,5} Benjamin Jones, ¹ Frances A. Spring, ^{3, e} Piers J. Walser, ^e Catarina Martins Freire, ² Nicoletta Murcianor, ^{1, e} Maria Giustina Rotordam, ^e Svenja J. Woestmann, ^e Marwa Hamed, ¹⁰ Reem Alradwan, ¹⁰ Mouza AlKhrousey, ¹⁰ Ian Skidmore, ¹¹ Sarah Lewis, ¹¹ Shimon Hussain, ¹¹ Jane Jackson, ¹² Tom Latham, ¹³ Mark D. Killby, ^{1, e, e} William Lester, ¹² Nadime Becker, ⁶ Markus Rapedius, ⁸ Ashley M. Toye, ^{2, e} and Nicole M. Thomton

® blood[®] 12 JANUARY 2023 | VOLUME 141, NUMBER 2

	Collections			Antigènes			
N°	Nom	Symbole	N°	Symbole	Prévalence %		
205	Cost	COST	205001 205002	Cs ^a (COST1) Cs ^b (COST2)	>98 34		
207	li	ı	207002	I (I2)	>99		
208	Er	ER	208001 208002 208002	Er ^a (ER1) Er ^b (ER2) Er3 (ER3)	>99 <0.01 >99		
210			210001 210002	Le ^c Le ^d	1 6		
213	MN CHO	MN CHO	213001 213002 213003 213004 213005 213006	Hu M1 Tm Can Sext Sj	1 5 (24% Africains) 25 27 <1 2		

Devrait rejoindre sous peu un système existant!

Série 700

Nº	Nom	Symbole
700002	Batty	Ву
700003	Christiansen	Chra
700005	Biles	Bi
700006	Вох	Bxª
700017	Torkildsen	To ^a
700018	Peters	Pt ^a
700019	Reid	Rea
700021	Jensen	Jeª
700028	Livesay	Lia
700039	Milne	
700040	Rasmussen	RASM
700044		JFV
700047	Jones	JONES
700049		нјк
700050		ноғм
700054		REIT

Série 901

N°	Nom	Symbole	Prévalence (%)
901009	Anton	AnWj	> 99
901015		ABTI	>99
901017	Luke	LKE	98

About

Academy Support

eLearning Shop

FAQ

oin) (Lo

Working Parties >

Red Cell Immunogenetics and Blood Group Terminology

Red Cell Immunogenetics and Blood Group

Terminology

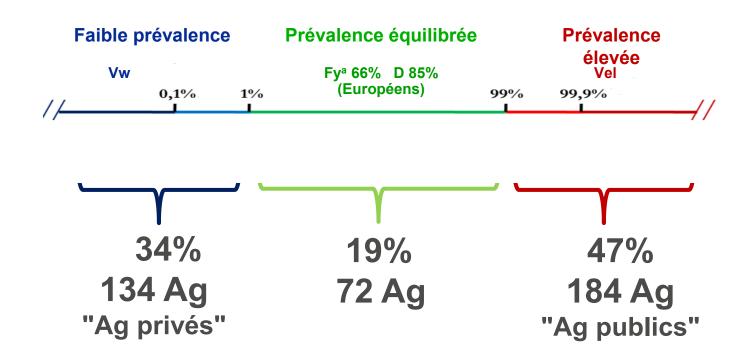
Our aim is to develop and maintain guidelines for blood group antigen and allele nomenclature for use in Transfusion Medicine and related sciences.

Catherine Hyland
RCIBGT Working Party Co-Chair, Principal
Research Fellow, Australian Red Cross
LifeBlood, Queensland, Australia

Christoph Gassner RCIBGT Working Party Co-Chair, Professor, Private University in the Principality of Liechtenstein

Red Cell Immunogenetics and Blood Group Terminology

About and Activities


Blood Group Terminology

Blood Group Allele Tables

Red Cell Immunogenetics and Blood Group Terminology Resources

Red Blood Cell Immunogenetics and Blood Group Terminology Working Party Terms of Reference

PRÉVALENCE DES ANTIGÈNES SUJETS D'ORIGINE EUROPÉENNE

LE RÔLE BIOLOGIQUE DES GROUPES SANGUINS

INTRODUCTION

- Antigènes de groupes sanguins polymorphiques
- Transmis génétiquement
- Immunogènes
- Carbohydrates, protéines, glycoprotéines, glycolipides
- Localisés à la surface de la membrane érythrocytaire
- Contribuent à l'architecture de la membrane du globule rouge
- Leur fonction a été progressivement élucidée pour certains, mais reste encore inconnue pour beaucoup d'entre eux!

INTRODUCTION

- Fonction biologique basée sur :
 - L'observation d'altérations physiologiques sur des globules rouges dépourvus de la structure en question (phénotype nul, s'il existe) ou sujet à mutation (phénotype mutant)
 - La comparaison de la séquence protéique avec d'autres protéines analogues dont la fonction est connue => possible extrapolation avec des structures homologues fonctionnelles dans d'autres cellules
- Rôles divers : rôle structurel et d'intégrité au niveau de la membrane érythrocytaire, transport de molécules à travers la membrane, récepteurs pour des ligands extracellulaires, molécules d'adhésion, enzymes, composants du complément et ses facteurs de régulation, formation du glycocalyx

Table 1. Blood group-carrying RBC membrane components

Carrier type	Blood (ISBT)	group system	Carrier molecule	Known function of carrier molecule	Secondary/probable function of the carrier molecule	Clinical manifestation of the absence of the carrier molecule
	Rh	*	RhD, RhCE, (RhAG)*	NH ₄ +/ gas exchange?	Structural	Stomatocytosis; mild compensated anemia
	Kidd		HUT/11	Urea transporter		Reduced ability to concentrate urine
Transporter or channel	Diego		AE-1	Anion exchanger; structural		Spherocytosis; severe anemia, failure to thrive
Chamier	Colton		AQP1	Water channel		Reduced osmotic water permeability
	Kx		Xk glycoprotein	Not known	Structural	Acanthocytosis; McLeod syndrome
	GIL		AQP3	Water/glycerol transporter		None
	Luthera	n	Lutheran glycoprotein (B-CAN	M) Adhesion	Structural?	None
	Duffy		DARC	Chemokine receptor		None
	Xg		Xg glycoprotein, CD99	Adhesion		None
	Scianna		ERMAP	Adhesion		None
Adhesion or signalling	Landste	iner-Wiener	LW glycoprotein (ICAM-4)	Adhesion		None
	Indian		Hermes antigen (CD44)	Adhesion		Not known
	OK		Neurothelin (CD147)	Adhesion		Not known
	RAPH		MER2 (CD151)	Adhesion		Multiple system disorder
	JMH		Sema7A (CDw108)	Adhesion		None
Glycophorin	MNS		GPA/GPB	Not known	Structural?	None
Glycophorni	Gerbich	ı	GPC/GPD	Structural		Elliptocytosis; mild anemia
	Chido/I	Rodgers	C4	C' regulation		None
Complement regulation	Cromer		DAF (CD55)	C' regulation		Association with intestinal disorder?
3	Knops		CR1 (CD35)	C' receptor/C' regulation		Not known

^{*} Systèmes qui seront évoqués dans cette présentation

Table 1. Blood group-carrying RBC membrane components

Carrier type	Blood group system (ISBT)	Carrier molecule	Known function of carrier molecule	Secondary/probable function of the carrier molecule	Clinical manifestation of the absence of the carrier molecule
	Kell	Kell glycoprotein	Enzyme	Structural	None
Enzyme	Yt	AChE	Enzyme		Not known
	Dombrock	ART4	Enzyme		None
	ABO	CHO^{\dagger}	Unknown	Innate defense?	None
	P	СНО	Unknown	Innate defense?	None
Carbohydrate	Lewis	СНО	Unknown	Innate defense?	None
Carbonytrate	Н	СНО	Unknown	Innate defense?	None
	I	СНО	Unknown	Innate defense?	None
	GLOB	СНО	Unknown	Innate defense?	Recurrent spontaneous abortion

^{*}RhAG does not carry blood group antigens but it is an integral protein of the functional complex

[†]Carbohydrate

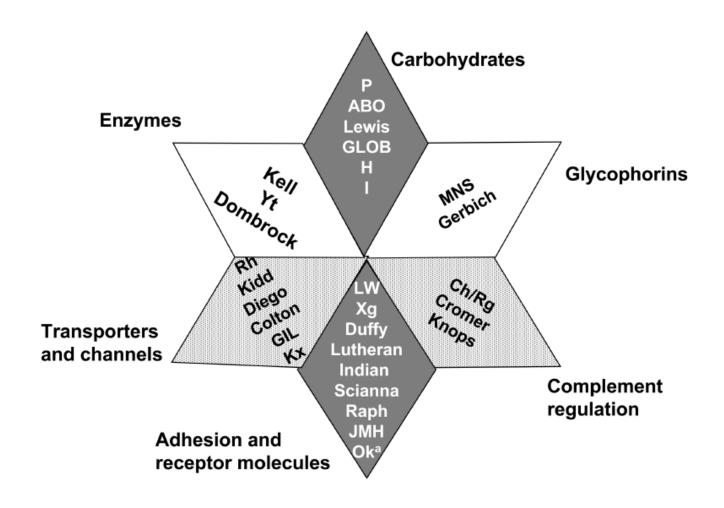
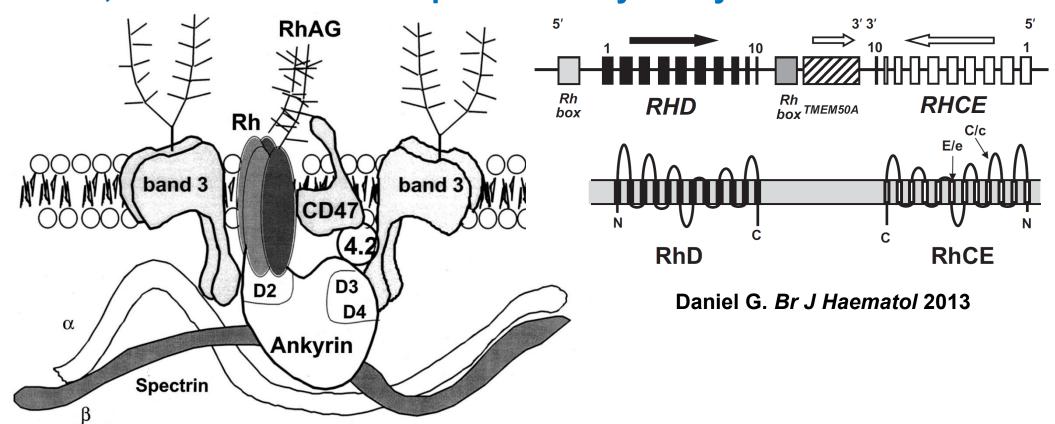



Fig. 1. Blood group systems grouped according to functional molecule.

TRANSPORTEURS ET CANAUX

LE SYSTÈME RH

- Protéines Rh insérées dans un complexe dans la membrane du globule rouge
- RhD, RhCE et RhAG sont purement érythrocytaires

Ancienne théorie : Tétramère de 2 molécules RhAG avec 2 molécules RhD ou 2 molécules RhCE

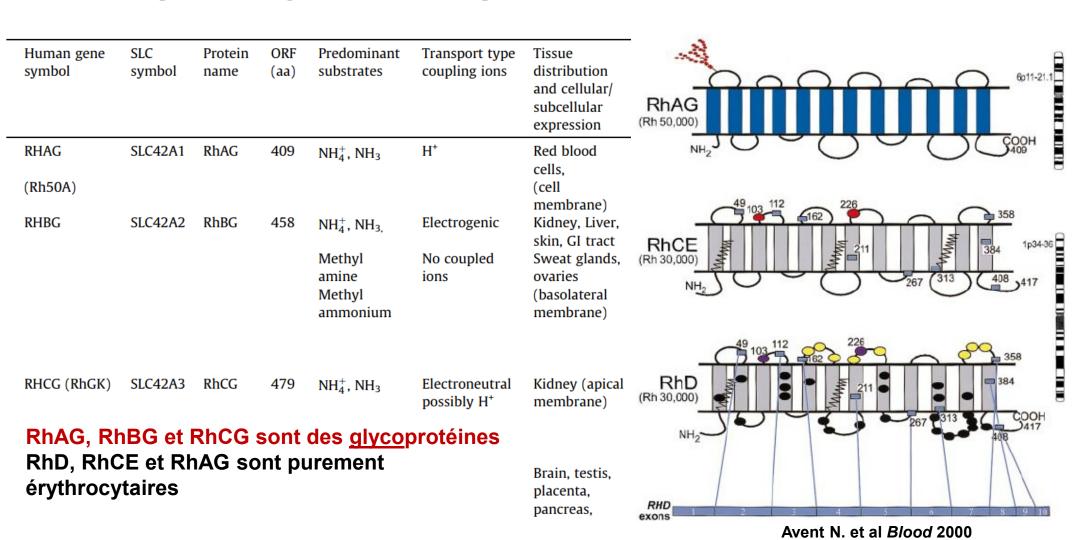
Nouvelle théorie : Hétérotrimère de RhAG/RhD/RhCE

LES PROTÉINES DE LA FAMILLE RH (RH-ASSOCIATED PROTEINS)

Molecular Aspects of Medicine 34 (2013) 629–637

Contents lists available at SciVerse ScienceDirect

Molecular Aspects of Medicine

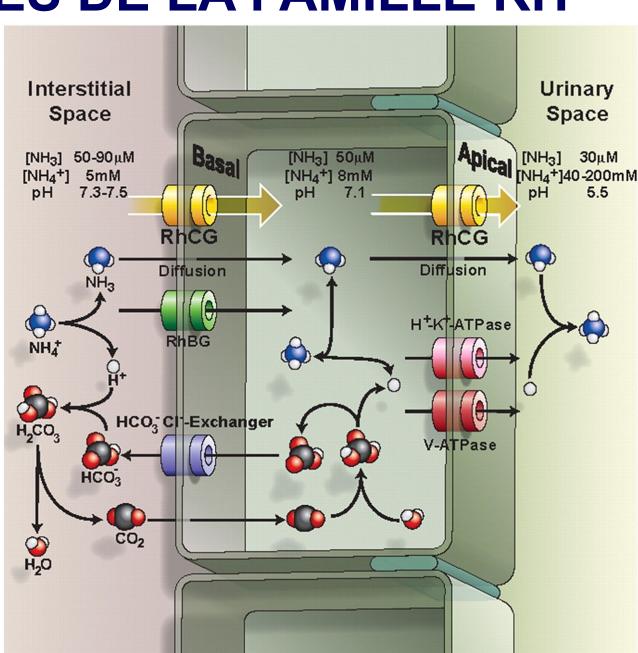

Review

Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport *

Nazih L. Nakhoul*, L. Lee Hamm

Department of Medicine, Section of Nephrology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine New Orleans, LA 70112, United States

Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine New Orleans, LA 70112, United States


RhAG : anciennement connu sous le nom de Rh50 car 50 kD (à ne pas confondre avec l'antigène RH50 (FPTT) !)

~39% d'homologie avec RhD et RhCE

Function of human Rh based on structure of RhCG at 2.1 Å

Franz Gruswitz^{a,b,c}, Sarika Chaudhary^{a,b,c}, Joseph D. Ho^{a,b,c}, Avner Schlessinger^{b,d}, Bobak Pezeshki^{a,b,c}, Chi-Min Ho^{a,b,c}, Andrej Sali^{b,d}, Connie M. Westhoff^e, and Robert M. Stroud^{a,b,c,1}

PNAS | May 25, 2010 | vol. 107 | no. 21

 RhD/CE et RhAG faciliteraient le transport des ions ammonium NH4⁺ mais rôle accessoire par rapport aux analogues RhBG et RhCG

Am J Physiol Cell Physiol. 2015 Dec 1; 309(11): C747-C758.

Published online 2015 Sep 9. doi: 10.1152/ajpcell.00085.2015

PMCID: PMC4868257

PMID: 26354748

Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins

<u>Tolga Caner</u>, <u>Solange Abdulnour-Nakhoul</u>, <u>Karen Brown</u>, <u>M. Toriqul Islam</u>, <u>L. Lee Hamm</u>, <u>and Nazih L. Nakhoul</u>

Rôle dans le transport du CO₂

INTERFACE FOCUS

royalsocietypublishing.org/journal/rsfs

Review

Cite this article: Michenkova M *et al.* 2021 Carbon dioxide transport across membranes. *Interface Focus* **11**: 20200090.

https://doi.org/10.1098/rsfs.2020.0090

Accepted: 4 January 2021

Carbon dioxide transport across membranes

Marie Michenkova^{1,†}, Sara Taki^{1,†}, Matthew C. Blosser⁴, Hyea J. Hwang⁵, Thomas Kowatz¹, Fraser. J. Moss¹, Rossana Occhipinti¹, Xue Qin¹, Soumyo Sen⁵, Eric Shinn⁵, Dengke Wang¹, Brian S. Zeise¹, Pan Zhao¹, Noah Malmstadt⁴, Ardeschir Vahedi-Faridi¹, Emad Tajkhorshid⁵ and Walter F. Boron^{1,2,3}

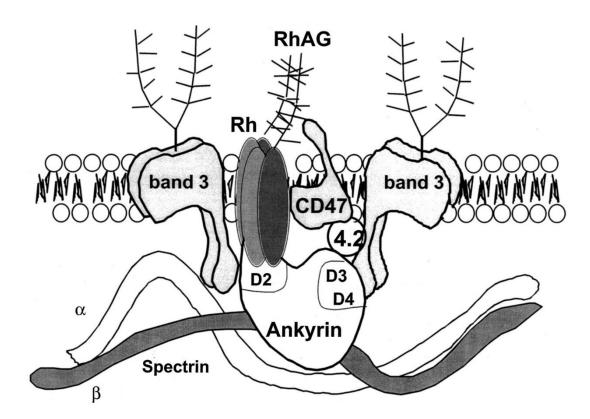
¹Department of Physiology and Biophysics, ²Department of Medicine, and ³Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA

⁴Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA

⁵NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

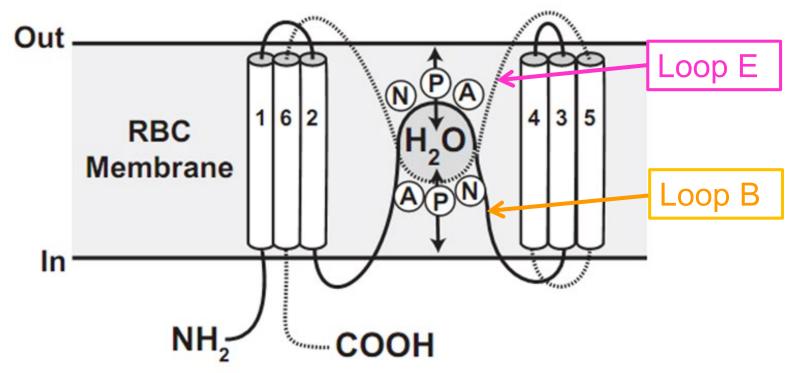
Rôle dans le transport du CO₂

Human RBCs express RhAG (which carries the RhA antigen; the 'G' stands for glycosylated) as well as RhCE (a non-glycosylated protein carrying both the RhC and RhE antigens) and RhD. Moreover, the RBC is virtually the only terminally differentiated cell that expresses any of these proteins. Some combination of the three forms of RBC Rh proteins form trimers called the 'Rh complex' in the RBC membrane. In oocytes, only RhAG is necessary for expression as well as NH₃ and CO₂ permeability [122]. By themselves, RhCE or RhD cannot support NH₃ or CO₂ transport. Moreover, the coexpression of RhCE and/or RhD with RhAG has no functional effect. Mice have only mRh, which is analogous to RhCE and RhD [123]. In mice, the knockout of the *mRh* gene eliminates the expression of RhAG in RBCs.


In mammals, the other two Rh family members, SLC42A2 (RhBG) and SLC42A3 (RhCG), are found in non-erythroid tissues like kidney, liver, brain and pancreas [124–131]. In the kidney, RhBG and RhCG play important roles in the medulary recycling (or short-circuiting) of NH₃/NH₄⁺, a process that minimizes the return of NH₃/NH₄⁺ to the blood in the renal cortex, and thereby maximizes the urinary excretion of NH₃/NH₄⁺—a critical process in the response of the body to acid loads.

3.3.2. Carbon dioxide permeability of rhesus proteins

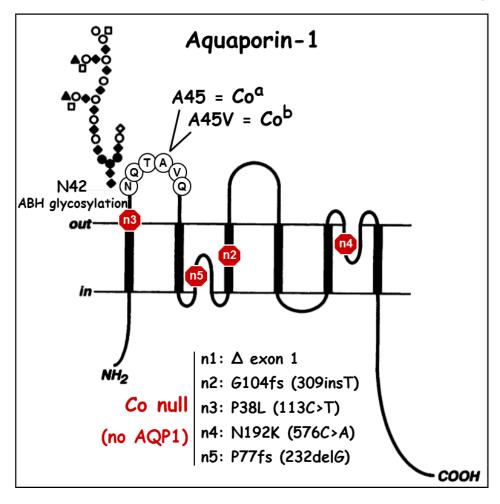
Working on normal and Rh-null human RBCs, Ripoche *et al*. [21] in 2006 and Endeward *et al*. [20] in 2008 developed evidence that the Rh complex acts as a CO_2 channel. Later, Musa-Aziz and colleagues heterologously expressed in *Xenopus* oocytes AmtB [108], RhAG [108,132], RhBG [132] or RhCG [132], and demonstrated using a pH_S-based assay (figure 8a) that all four are permeable to both NH₃ and CO_2 . Unlike the AQPs, which demonstrate considerable variability in the ratio $(\Delta pH_S^*)_{CO_2}/(\Delta pH_S^*)_{NH_3}$, the Rh proteins are rather similar to one another in this regard.


LE SYSTÈME RH

- RhD, RhCE et RhAG non vitales car les phénotypes nuls existent!
 - Rh_{null} de type amorphe (RhD/RhCE nuls)
 - Rh_{null} de type régulateur (RhAG nul)
 - => Fragilité de la membrane, avec anémie modérée

LE SYSTÈME COLTON

Porté par l'aquaporine 1, transporteur d'eau au niveau cellulaire



Halverson G, Peyrard T. *Immunohematology* 2010

AQP1 exists as a homotetramer at the RBC surface. AQP1 contains 2 tandem repeats, each containing 3 membrane-spanning domains and a pore-forming loop with the signature motif Asn-Pro-Ala (NPA). This forms a water-specific channel that provides the membranes of RBCs with high permeability to water, thereby permitting water to move in the direction of an osmotic gradient

LE SYSTÈME COLTON

Il existe un phénotype CO null ! Impact possible si restriction hydrique importante (difficulté à concentrer les urines, diminution de la pérméabilité vasculaire au niveau pulmonaire)

LE SYSTÈME COLTON

Reviews

Medicine 1997 Vol76:3

in Molecular Medicine

AQUAPORINS IN CLINICAL MEDICINE

143

The Aquaporin Family of Water Channel Proteins in Clinical Medicine

M. DOUGLAS LEE, LANDON S. KING, AND PETER AGRE

12q13 AQP5 salivary and lacrimal glands, corneal epithel., airway sub-mucosal glands. type I pneumocytes

Tissue Sites

unknown

Phenotype

12q13 AQP2

Chromosome

renal collecting duct-apical [vasopressin-regulated]

nephrogenic diabetes insipidus

lens fiber cells

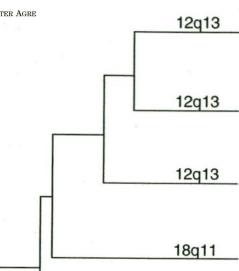
congenital cataracts

unknown

Photo from the Nobel Foundation archive.

Peter Agre The Nobel Prize in Chemistry 2003

Born: 30 January 1949, Northfield, MN, USA

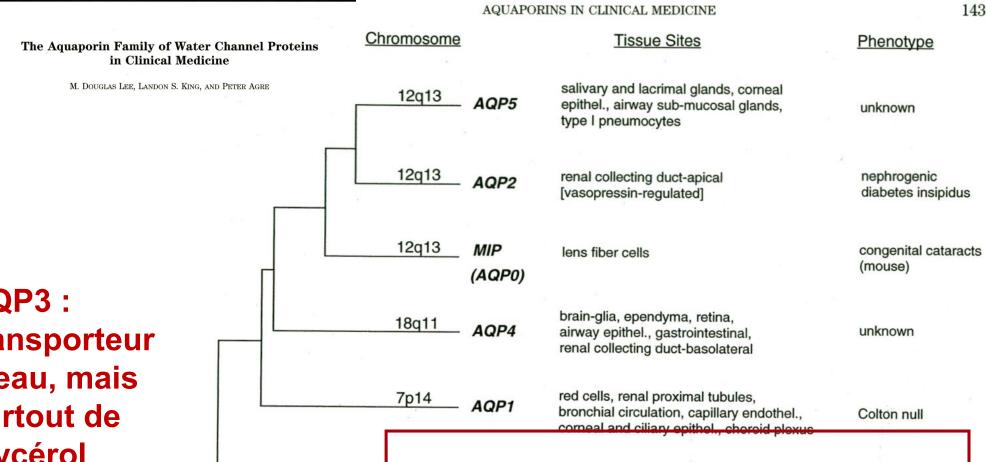

Affiliation at the time of the award: Johns Hopkins University School of Medicine, Baltimore, MD, USA

Prize motivation: "for the discovery of water channels

MIP (mouse) (AQP0) brain-glia, ependyma, retina, 18q11 AQP4 airway epithel., gastrointestinal. unknown renal collecting duct-basolateral red cells, renal proximal tubules. 7p14 AQP1 bronchial circulation, capillary endothel., Colton null corneal and ciliary epithel., choroid plexus renal collecting duct-basolateral. 9p12 AQP3

airway epithel., eye conjunctiva,

gastrointestinal, meningeal cells



LE SYSTÈME GIL

Reviews

Medicine 1997 Vol76;3

in Molecular Medicine

AQP3

9p12

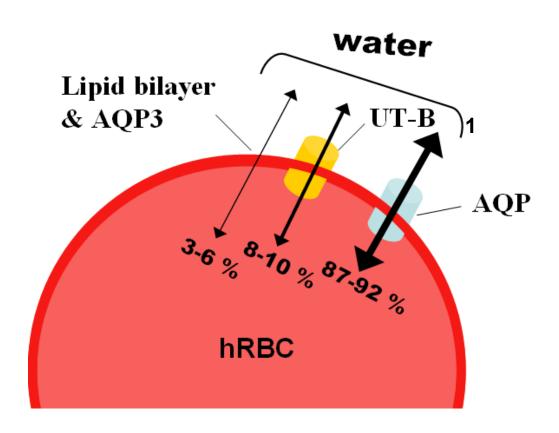
renal collecting duct-basolateral.

airway epithel., eye conjunctiva,

gastrointestinal, meningeal cells

unknown

AQP3: transporteur d'eau, mais surtout de glycérol

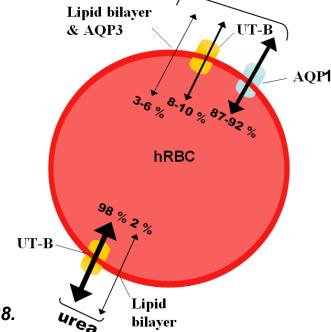

LE SYSTÈME GIL

Le phenotype GIL- est un phénotype nul Absence de signes cliniques

(ISBT 029) GIL blood group alleles v4.1 30-NOV-2021

Phenotype	Allele name	Nucleotide change		Predicted amino acid change	(Reference No.) PMID
GIL:1 or GIL+	GIL*01				
GIL:-1 or GIL-	GIL*01N.01	c.710+1G>A	i5	Aberrant splicing	PMID: 12239222
GIL:-1 or GIL-	GIL*01N.02	c.277_283dupCTGGCTC	3	p.Arg95ProfsTer4	(1), Abstract

AQP1 ET AQP3

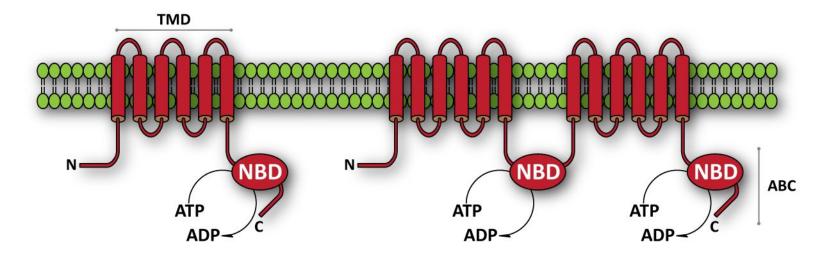

Azouzi S, et al., PLoS One 2013;8: e82338.

LE SYSTÈME JK

- Porté par la protéine UT-B (codée par le gène SLC14A1)
- SLC : famille des "Solute Carrier" transporteurs
- UT-B pour Urea Transporter type B => transporteur d'urée. Rôle important au niveau rénal

Les hématies de groupe rare Jk(a-b-) (phenotype nul) sont

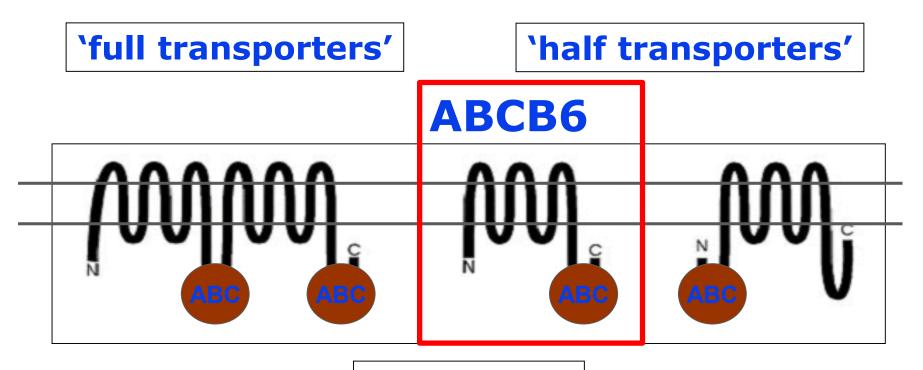
résistantes à la lyse par l'urée 2M



Water

Azouzi S, et al., PLoS One 2013;8: e82338.

LES TRANSPORTEURS DE TYPE ABC


- ATP Binding Cassette
- Transporteurs majeurs au niveau cellulaire
- La plus grande famille de protéines transmembranaires
- Pompes de types « in » (influx) ou « out » (efflux)
- Aucun système de groupe sanguin rattaché à un ABC transporteur avant 2012!

No	Système	Symbole	Gène(s)
032	Jr	JR	ABCG2
033	Lan	LAN	ABCB6
034	Vel	VEL	SMIM1
035	CD59	CD59	CD59
036	Augustine	AUG	SLC29A1
037	Kanno	KANNO	PRNP
038	Sid	SID	B4GALNT2
039	CTL2	CTL2	SLC44A2
040	PEL	PEL	ABCC4
041	MAM	MAM	EMP3
042	ЕММ	EMM	PIGG
043	ABCC1	ABCC1	ABCC1
044	ER	ER	PIEZO1
045	CD36	CD36	CD36

Tous les systèmes de groupes sanguins portés par un ABC transporteur ont été découverts avec les équipes du CNRGS/UMR_S1134 en première ligne : JR, LAN, PEL, ABCC1

Transporteurs de type ATP-Binding Cassette (ABC)

Cytoplasme

Les transporteurs de type ATP-binding cassette facilitent de manière active l'efflux transmembranaire de nombreuses substances

Exemples d'alleles silencieux d'ABCB6 décrits chez les sujets de groupe rare Lan-

ABCB6 (2q36) 19 exons

Lan-	ABCB6*01N.01	197_198insG	Exon 1	Ala66fsX
Lan-	ABCB6*01N.02	717G>A	Exon 3	Gln239X
Lan-	ABCB6*01N.03	953_956delGTGG	Exon 4	Gly318fsX
Lan-	ABCB6*01N.04	1533_1543dupCGGCTCCCTGC	Exon 9	Leu515fsX
Lan-	ABCB6*01N.05	1709_1710delAG	Exon 11	Glu570fsX
Lan-	ABCB6*01N.06	1690_1691delAT	Exon 11	Met564fsX
Lan-	ABCB6*01N.07	1867delinsAACAGGTGA	Exon 14	Gly623fsX
Lan-	ABCB6*01N.08	1942C>T	Exon 14	Arg648X
Lan-	ABCB6*01N.09	1985_1986delTC	Exon 15	Leu662fsX
Lan-	ABCB6*01N.10	2256+2t>g	Intron 16	Splicing defect
Lan-	ABCB6*01N.11	1236G>A	Exon 6	Trp412X

Les sujets Lan- sont en fait « Lan null » et peuvent être considérés comme des « knock-out » humains pour le gène ABCB6

Ce qui était inattendu!

- ABCB6 jamais décrit sur le globule rouge (membrane mitochondriale externe)
- ABCB6 rapporté comme absolument essentiel pour l'érythropoïèse (biosynthèse de l'hème)

Personnes Lan- ("human knock out" pour *ABCB6*) en bonne santé apparente et sans anomalies biologiques particulières!

ARTICLE

ABCB6 Mutations Cause Ocular Coloboma Mutation Leu811Val dans ABCB6

Lejing Wang,^{1,14,*} Fei He,^{2,3,14} Juan Bu,^{1,14} Xiaqi Liu,^{2,3} Wei Du,^{1,13} Jiamei Dong,^{1,4} Jeffrey D. Cooney,^{5,6} Sushil Kumar Dubey,⁷ Yi Shi,^{2,3} Bo Gong,^{2,3} Jing Li,¹ Paul F. McBride,^{5,6} Yanlei Jia,⁸ Fang Lu,^{2,3} Kathleen A. Soltis,^{5,6} Ying Lin,^{2,3} Prasanthi Namburi,⁷ Chen Liang,¹ Periasamy Sundaresan,⁷ Barry H. Paw,^{5,6} Dean Y. Li,^{9,10,11} John D. Phillips,¹² and Zhenglin Yang^{2,3,*}

Ocular coloboma is a developmental defect of the eye and is due to abnormal or incomplete closure of the optic fissure. This disorder displays genetic and clinical heterogeneity. Using a positional cloning approach, we identified a mutation in the ATP-binding cassette (ABC) transporter ABCB6 in a Chinese family affected by autosomal-dominant coloboma. The Leu811Val mutation was identified in seven affected members of the family and was absent in six unaffected members from three generations. A LOD score of 3.2 at $\theta = 0$ was calculated for the mutation identified in this family. Sequence analysis was performed on the ABCB6 exons from 116 sporadic cases of microphthalmia with coloboma (MAC), isolated coloboma, and aniridia, and an additional mutation (A57T) was identified in three patients with MAC. These two mutations were not present in the ethnically matched control populations. Immunostaining of transiently transfected, Myc-tagged ABCB6 in retinal pigment epithelial (RPE) cells showed that it localized to the endoplasmic reticulum and Golgi apparatus of RPE cells. RT-PCR of ABCB6 mRNA in human cell lines and tissue indicated that ABCB6 is expressed in the retinae and RPE cells. Using zebrafish, we show that abcb6 is expressed in the eye and CNS. Morpholino knockdown of abcb6 in zebrafish produces a phenotype characteristic of coloboma and replicates the clinical phenotype observed in our index cases. The knockdown phenotype can be corrected with coinjection of the wild-type, but not mutant, ABCB6 mRNA, suggesting that the phenotypes observed in zebrafish are due to insufficient abcb6 function. Our results demonstrate that ABCB6 mutations cause ocular coloboma.

The American Journal of Human Genetics 90, 40–48, January 13, 2012

Research Article

Missense mutations in the ABCB6 transporter cause dominant familial pseudohyperkalemia

Immacolata Andolfo,^{1,2} Seth L. Alper,^{3,4,5} Jean Delaunay,⁶ Carla Auriemma,^{1,2} Roberta Russo,^{1,2} Roberta Asci,¹ Maria Rosaria Esposito,¹ Alok K. Sharma,^{3,4,5} Boris E. Shmukler,^{3,4,5} Carlo Brugnara,⁷ Lucia De Franceschi,⁸ and Achille Iolascon^{1,2}*

Am. J. Hematol. 88:66-72, 2013.

Concept de « gain of function protein » : il vaut parfois mieux ne pas avoir du tout de protéine qu'une forme altérée!

Exemples d'allèles silencieux d'ABCG2 responsables du phénotype rare Jr(a-)

Jr(a-)	ABCG2*01N.01	376C>T	Exon 4	Gln126X
Jr(a-)	ABCG2*01N.02.01	706C>T	Exon 7	Arg236X
Jr(a-)	ABCG2*01N.02.02	34G>A 706C>T	Exon 2 Exon 7	Val12Met Arg236X
Jr(a-)	ABCG2*01N.03	736C>T	Exon 7	Arg246X
Jr(a-)	ABCG2*01N.04	337C>T	Exon 4	Arg113X
Jr(a-)	ABCG2*01N.05	784G>T	Exon 7	Gly262X
Jr(a-)	ABCG2*01N.06	34G>A 1591C>T	Exon 2 Exon 13	Val12Met Gln531X
Jr(a-)	ABCG2*01N.07	187_197delATATTATCGAA	Exon 2	Ile63TyrfsX
Jr(a-)	ABCG2*01N.08	542_543insA	Exon 6	Phe182ValfsX
Jr(a-)	ABCG2*01N.09	730C>T	Exon 7	Gln244X

2 mutations ABCG2 « ethniques » de type stop codon

> Gln126Stop en Asie

> Arg236Stop chez les « gens du voyage »

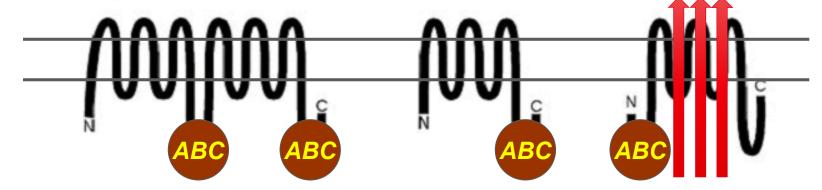
Transporteurs de type ATP-Binding Cassette (ABC)

Cytoplasme

Les transporteurs de type ATP-binding cassette facilitent de manière active l'efflux transmembranaire de nombreuses substances

Exemples d'allèles silencieux d'ABCG2 responsables du phénotype Jr(a-)

Jr(a-)	ABCG2*01N.01	376C>T	Exon 4	Gln126X
Jr(a-)	ABCG2*01N.02.01	706C>T	Exon 7	Arg236X
Jr(a-)	ABCG2*01N.02.02	34G>A 706C>T	Exon 2 Exon 7	Val12Met Arg236X
Jr(a-)	ABCG2*01N.03	736C>T	Exon 7	Arg246X
Jr(a-)	ABCG2*01N.04	337C>T	Exon 4	Arg113X
Jr(a-)	ABCG2*01N.05	784G>T	Exon 7	Gly262X
Jr(a-)	ABCG2*01N.06	34G>A 1591C>T	Exon 2 Exon 13	Val12Met Gln531X
Jr(a-)	ABCG2*01N.07	187_197delATATTATCGAA	Exon 2	Ile63TyrfsX
Jr(a-)	ABCG2*01N.08	542_543insA	Exon 6	Phe182ValfsX
Jr(a-)	ABCG2*01N.09	730C>T	Exon 7	Gln244X


2 mutations ABCG2 « ethniques » de type stop codon

> Gln126Stop en Asie

Arg236Stop chez les « gens du voyage »

Ce qui était inattendu!

- ABCG2 connu comme transporteur essentiel voire vital dans la détoxification cellulaire (intestin, foie, cellules souches et placenta)
- ABCG2 plus connu sous le nom de Breast Cancer Resistance Protein (BCRP). Permet un efflux +++ d'un grand nombre d'anti-cancéreux => risqué de résistance chez certains mutants d'ABCG2

Cytoplasme

Anticancéreux

ABCG2 et hyperuricémie (goutte)

GENETICS

Common Defects of ABCG2, a High-Capacity Urate Exporter, Cause Gout: A Function-Based Genetic Analysis in a Japanese Population

Séquençage du gène ABCG2 chez 90 japonais avec hyperuricémie

Hirotaka Matsuo,^{1*} Tappei Takada,² Kimiyoshi Ichida,^{3,4} Takahiro Nakamura,^{5,6}
Akiyoshi Nakayama,^{1,7} Yuki Ikebuchi,² Kousei Ito,² Yasuyoshi Kusanagi,¹ Toshinori Chiba,¹
Shin Tadokoro,¹ Yuzo Takada,⁸ Yuji Oikawa,⁹ Hiroki Inoue,¹ Koji Suzuki,¹⁰ Rieko Okada,¹¹
Junichiro Nishiyama,¹² Hideharu Domoto,¹³ Satoru Watanabe,¹⁴ Masanori Fujita,¹⁴
Yuji Morimoto,¹ Mariko Naito,¹¹ Kazuko Nishio,¹¹ Asahi Hishida,¹¹ Kenji Wakai,¹¹ Yatami Asai,¹⁵
Kazuki Niwa,⁹ Keiko Kamakura,¹⁶ Shigeaki Nonoyama,¹⁷ Yutaka Sakurai,¹⁸ Tatsuo Hosoya,⁴
Yoshikatsu Kanai,¹⁹ Hiroshi Suzuki,² Nobuyuki Hamajima,¹¹ Nariyoshi Shinomiya¹

(Published 4 November 2009: Volume 1 Issue 5 5ra11)

Gout based on hyperuricemia is a common disease with a genetic predisposition, which causes acute arthritis. The ABCG2/BCRP gene, located in a gout-susceptibility locus on chromosome 4q, has been identified by recent genome-wide association studies of serum uric acid concentrations and gout. Urate transport assays demonstrated that ABCG2 is a high-capacity urate secretion transporter. Sequencing of the ABCG2 gene in 90 hyperuricemia patients revealed several nonfunctional ABCG2 mutations, including Q126X. Quantitative trait locus analysis of 739 individuals showed that a common dysfunctional variant of ABCG2, Q141K, increases serum uric acid. Q126X is assigned to the different disease haplotype from Q141K and increases gout risk, conferring an odds ratio of 5.97. Furthermore, 10% of gout patients (16 out of 159 cases) had genotype combinations resulting in more than 75% reduction of ABCG2 function (odds ratio, 25.8). Our findings indicate that nonfunctional variants of ABCG2 essentially block gut and renal urate excretion and cause gout.

org on September 29, 2010

Mutation p.Q126X responsable du phénotype Jr(a-) rapportée ici mais sans lien avec un groupe sanguin particulier!

La mutation p.Q141K dans ABCG2 est responsable d'une hyperuricémie au Japon => autre exemple de « gain of function protein »

MOLÉCULES D'ADHÉSION ET RÉCEPTEURS

LE SYSTÈME FY

- Récepteur du Plasmodium vivax (exclusif ?)
- DARC : Duffy antigen receptor of chemokines
- ACKR1: Atypical Chemokine Receptor 1
- Sert de "réservoir" pour plusieurs chimiokines, en particulier l'IL-8

LE SYSTÈME FY

FUTURE ONCOLOGY, VOL. 2, NO. 5 | REVIEW

CXC chemokines and prostate cancer: growth regulators and potential biomarkers

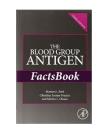
Alex B Lentsch

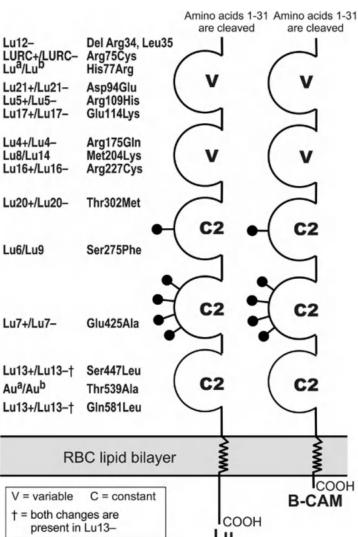
Published Online: 9 Oct 2006 https://doi-org.proxy.insermbiblio.inist.fr/10.2217/14796694.2.5.651

regulators and biomarkers for prostate cancer stage and progression.

View Article

Tools

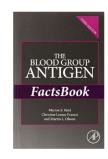

Share

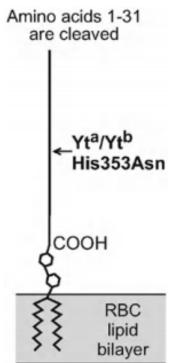

Abstract

CXC chemokines are a subset of chemotactic cytokines that possess angiogenic or angiostatic properties. Using genetically engineered mice lacking the receptors for these ligands, recent research has demonstrated a significant role for CXC chemokines in the development and growth of prostate tumors. The Duffy antigen/receptor for chemokines (DARC), which only binds to CXC chemokines that have analogenic properties, is a nonsignaling receptor expressed on erythrocytes that appears to function by clearing these chemokines from sites of overproduction. The majority of men of African descent lack this receptor on their erythrocytes, suggesting that loss of this receptor may contribute to aggressive tumor phenotypes in these individuals. Thus, CXC chemokines and the erythrocyte DARC may serve as important growth

LE SYSTÈME LU

- Glycoprotéine appartenant à la superfamille des immunoglobulines (IgSF)
- Deux isoformes sur les hématies : Lu et B-CAM (Basal Cell Adhesion Molecule)
- Fixe la laminine 10 et 11 => pourrait jouer un rôle dans la migration des hématies matures de la moelle vers la circulation sanguine
- Le phenotype nul existe, sans signes cliniques particuliers (attention, à bien différencier du phénotype In(Lu), apparaissant Lu(a-b-), plus fréquent, mais dont l'origine moléculaire est totalement différente)


ENZYMES


LE SYSTÈME KEL

- Famille des endopeptidases neutres : métalloprotéinase à zinc de type M13 (néprilysine)
- Substrat majeur : endothéline 3 (puissant vasoconstricteur)
 => la protéine KEL pourrait jouer un rôle dans la vasoconstriction locale
- Phénotype KEL nul, sans signes cliniques apparents (particulièrement retrouvé sur l'Île de La Réunion)

LE SYSTÈME YT

- Porté par une enzyme, l'acétylcholinestérase
- Protéine de type GPI-linked
- Rôle majeur au niveau de la régulation du signal neuromusculaire, mais rôle inconnu au niveau du globule rouge
- Aucun cas de phénotype nul récessif rapporté à ce jour (uniquement quelques exceptionnels phénotypes acquis, apparaissant Yt(a-b-) ou Yt(a-b+w), dans certains contextes pathologiques)

PROTÉINES ASSOCIÉES AU COMPLÉMENT

LE SYSTÈME KN

- Knops
- Porté par la protéine CR1
- Forte affinité pour les fractions C3b et C4b
- Phénotype SI(a-) ou KN:-4 particulièrement fréquent en Afrique sub-saharienne => moindre susceptibilité à l'infection par P. falciparum
- Pas de phénotype null à proprement parler, mais phénotype d'expression très faible : phénotype Helgeson (dont la base moléculaire vient d'être élucidée)

LE SYSTÈME KN

nature communications

6

Nature Communications | (2023)14:5001

Article

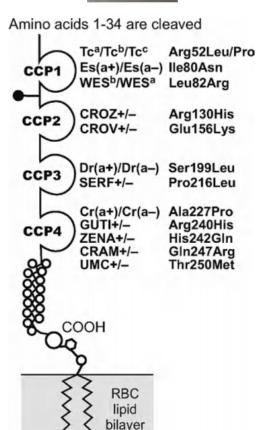
https://doi.org/10.1038/s41467-023-40708-w

Elucidation of the low-expressing erythroid CR1 phenotype by bioinformatic mining of the GATA1-driven blood-group regulome

Received: 21 November 2022

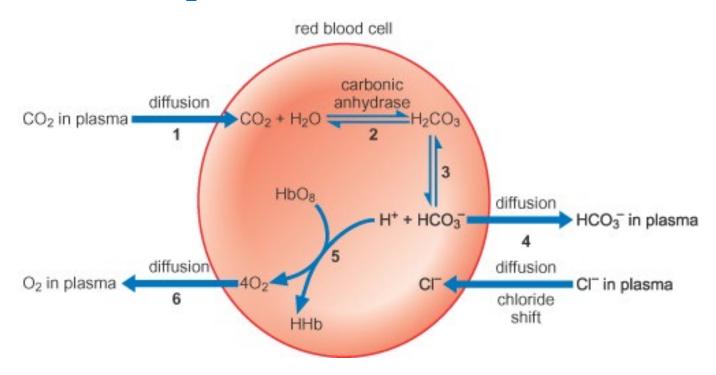
Ping Chun Wu ® ¹, Yan Quan Lee ® ¹, Mattias Möller ® ^{1,2}, Jill R. Storry ® ^{1,3} & Martin L. Olsson ® ^{1,3} □

Accepted: 8 August 2023

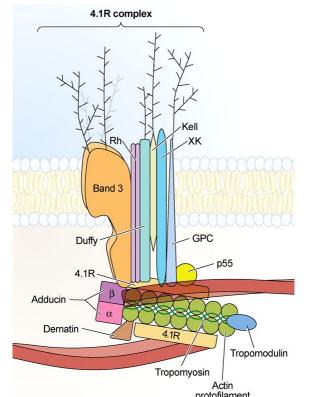

The number of CR1 molecules expressed on RBCs exhibits a 10fold variation across individuals; for most people, it lies within a range
of 100–1,000 molecules per cell^{5,13}. However, if the RBCs carry fewer
molecules (20–100), the individuals are considered to be of the Helgeson phenotype²⁰. Since persons of the Helgeson phenotype have
barely detectable amounts of erythrocyte CR1 by hemagglutination,
they are considered to be of the serological null phenotype²¹.

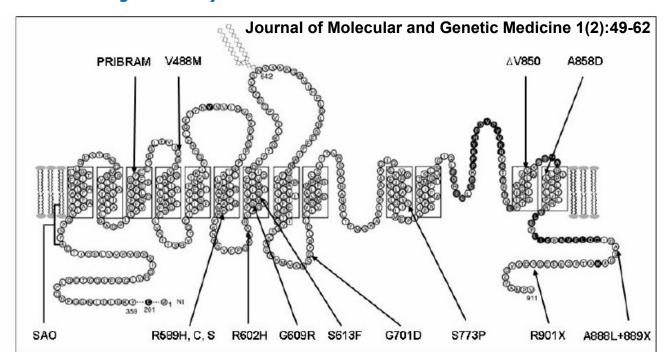
The Helgeson phenotype was reported with a prevalence of 1%, both in people of African American and Caucasian origins²².

LE SYSTÈME CROM



- Cromer
- Porté par la protéine CD55 ou DAF (Decay Accelerating Factor)
- Protéine de type GPI-linked
- Accélère la destruction des enzymes C3 et C5 convertases => régulation de la cascade du complément
- Phénotype nul CROM:-7 ou IFC- ou Inab : troubles digestifs importants




PROTÉINES DE STRUCTURE

 AE-1, Anion Transporter: échanges de concentrations equimolaires d'ions Cl⁻ pour des ions HCO₃⁻ => permet l'elimination du CO₂ des tissus et le maintien du pH rénal

- Porte les antigènes du système Diego (DI)
- Protéine la plus abondante sur le globule rouge (~1.10⁶/hématie)
- Mutations hétérozygotes à l'origine de multiples formes d'anomalies de membranes du globule rouge (exemple de la SAO: Southeast Asian ovalocytosis)

Cible possible d'autoanticorps chauds, parfois IgA (sévère)

Lethal autoimmune hemagglutination due to an immunoglobulin A autoagglutinin with Band 3 specificity

Abdulgabar Salama,¹ Daniel Janvier,² Beate Mayer,¹ Carole Saison,² Henriette Moscatelli,³ Françoise Aucouturier,⁴ Pinar Yilmaz,³ Lionel Arnaud,² Vanessa Wild,⁵ Stefan Knop,⁶ and Jean-Pierre Cartron²

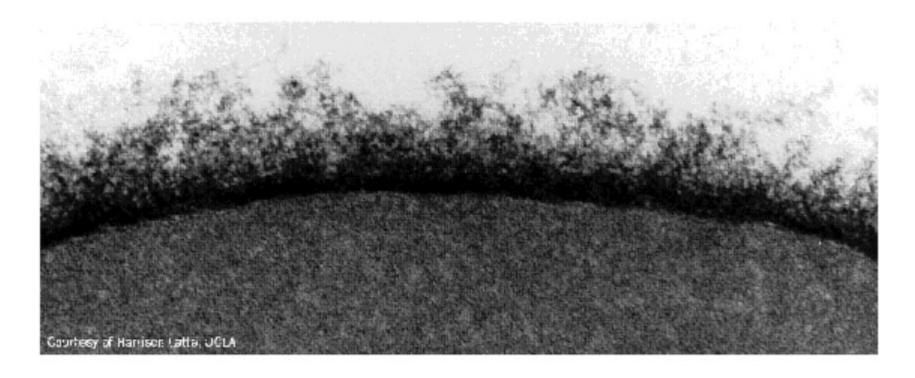
TRANSFUSION 2014;54:1988-1995.

 Longtemps jugée comme vitale, mais il existe des exceptionnels phénotypes nuls...

Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3

Maria Letícia Ribeiro, Nicole Alloisio, Helena Almeida, Clara Gomes, Pascale Texier, Carlos Lemos, Gabriela Mimoso, Laurette Morlé, Faïza Bey-Cabet, René-Charles Rudigoz, Jean Delaunay, and Gabriel Tamagnini

BLOOD, 15 AUGUST 2000 • VOLUME 96, NUMBER 4


Band 3 null^{VIENNA}, a novel homozygous *SLC4A1* p.Ser477X variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis

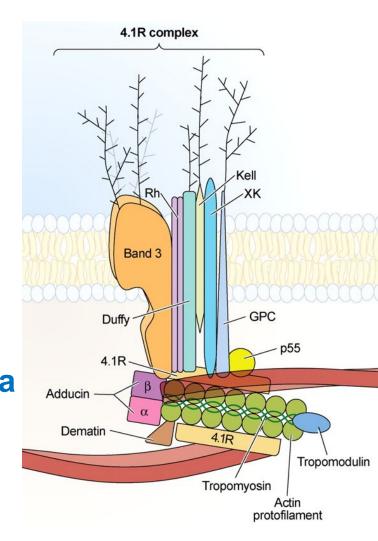
Leo Kager ^{1,2} * Lesley J. Bruce ³ * Petra Zeitlhofer ⁴ Joanna F. Flatt ³
Tabita M. Maia ⁵ M. Leticia Ribeiro ⁵ Bernhard Fahrner ¹ Gerhard Fritsch ²
Kaan Boztug ^{1,6} Oskar A. Haas ^{1,2}

	Band 3 null ^{VIENNA} (2011–2016)
Hematological	
Anemia	Severe (at birth: hemoglobin 4.0 g/dl)
Hydrops fetalis	Yes
Hepatosplenomegaly	Yes
Transfusion dependence (years)	Yes (2011–2016)

Pediatr Blood Cancer 2017; 64: e26227

COMPOSANTS DU GLYCOCALYX

The erythrocyte glycocalyx as revealed by electron microscopy using special staining techniques


https://sites.google.com/a/canacad.ac.jp/sl-hl-2-biology-8-ferguson/14-physiology-2/11-1-antibody-production-and-vaccination?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F&showPrintDialog=1

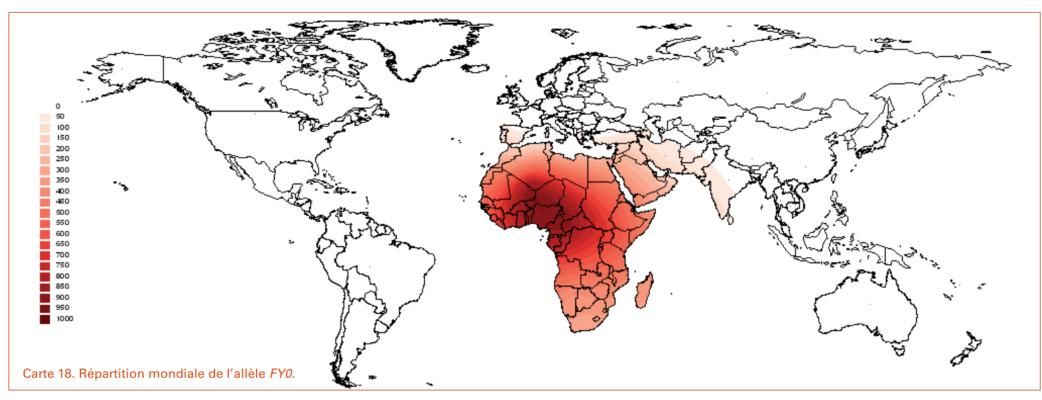
LES GLYCOPHORINES GPA ET GPB

- GPA, GPB, codés par GYPA et GYPB : systèmes MNS
- GPE : ne code pas pour des antigènes érythrocytaires mais participe à la diversité génétique (gènes hybrides)
- Rôle peu connu au niveau des globules rouges, si ce n'est l'intégration dans un complexe avec Rh et Bande 3
- Forte glycosylation par des oligosaccharides contenant de l'acide sialique => confère une forte charge électronégative aux globules rouges, ce qui limite les interactions avec les autres cellules et évite l'agrégation cellulaire
- Phénotype GPA nul : MNS:-28 ou En(a-), M-N-
- Phénotype GPB nul : MNS:-5 ou U-
- Phénotype GPA/GPB nul : M-N-S-s- M^kM^k (rare ++++)

LES GLYCOPHORINES GPC ET GPD

- GPC, GPD, codées par GYPC (splicing alternatif) : système GE (Gerbich)
- Glycosylation par des oligosaccharides contenant de l'acide sialique => confère une charge électronégative aux globules rouges
- La GPC représente un site important de fixation au cytosquelette érythrocytaire, dans un complexe stabilisant la forme et la stabilité mécanique du globule rouge => phénotype nul, Ge:-2,-3,-4 (Leach) avec elliptocytose (moindre susceptibilité à l'infection par *P. falciparum*)

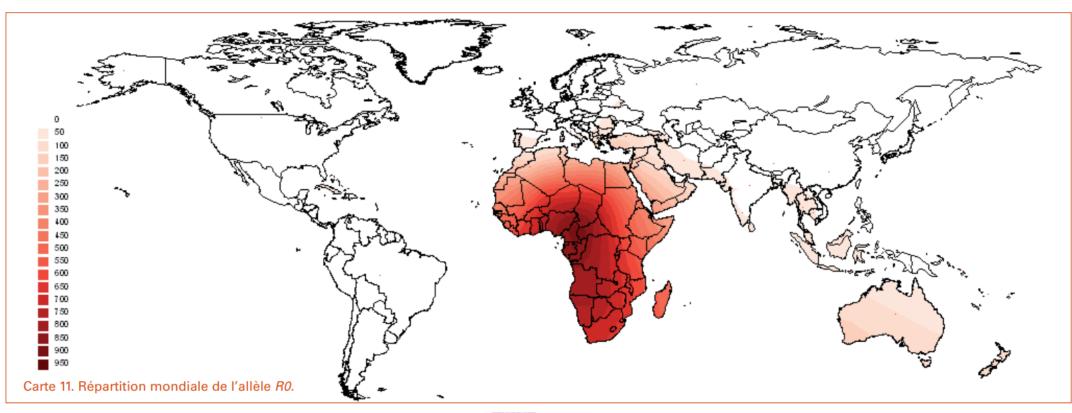
Salomao et al., PNAS 2008


LES SYSTÈMES CARBOHYDRATÉS

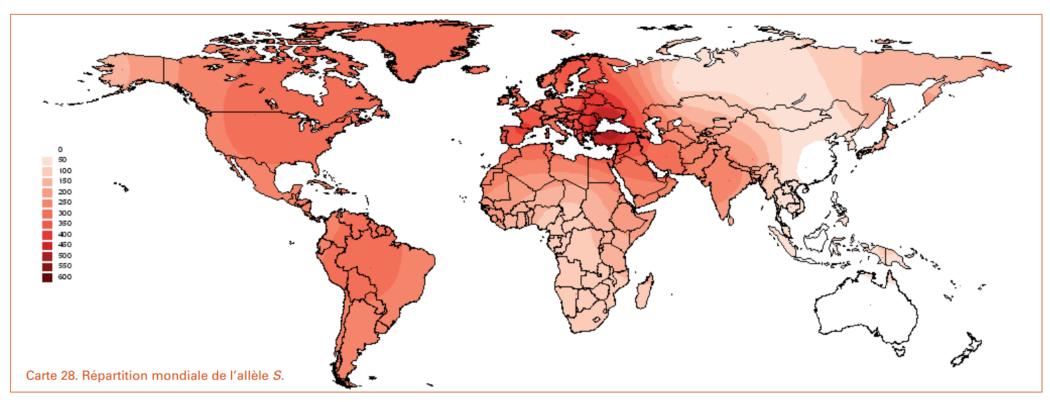
- ABO, H, I, P1PK, LE, GLOB
- Antigènes présents dans de nombreuses cellules et tissus
- Rôle peu connu au niveau des globules rouges
 - Rôle d'adhésines lors de l'embryogènèse
 - Première ligne de défense anti-bactérienne
- Phénotypes nuls sans signes cliniques particuliers, si ce n'est chez les sujets P- (p et Pk) avec fausses couches à répétition

POURQUOI UNE TELLE DIVERSITÉ PHÉNOTYPIQUE ?

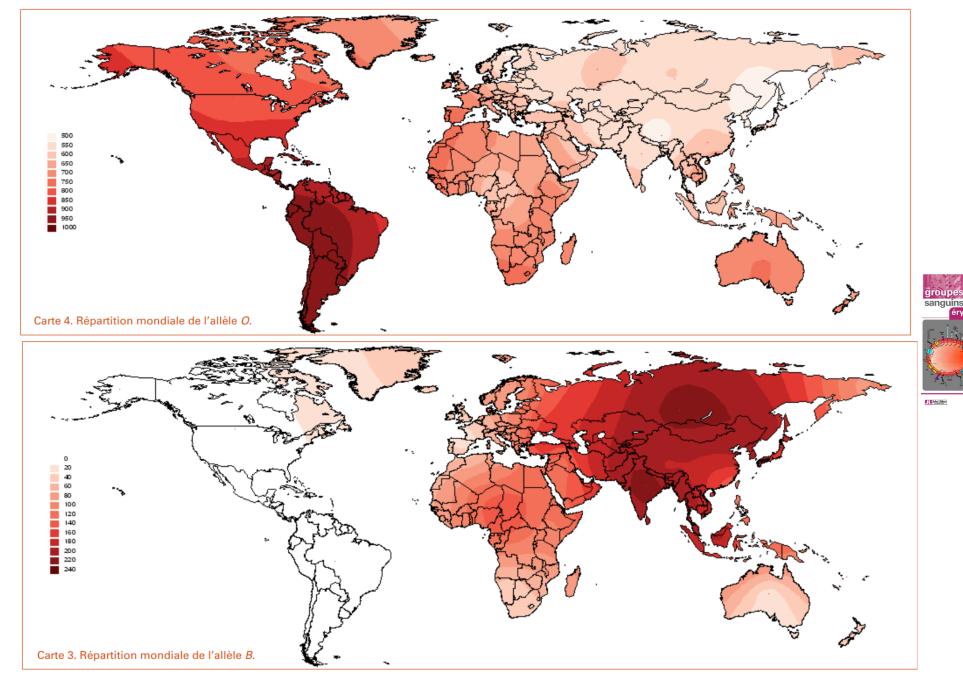
LE PALUDISME : LA PLUS GROSSE FORCE ÉVOLUTIVE



Les groupes sanguins érythrocytaires De Pascal Bailly, Jacques Chiaroni, Francis Roubinet 2015


ISBN: 978-2-7420-1100-1

AFRIQUE : LE BERCEAU DE L'HUMANITÉ



LE PALUDISME : LA PLUS GROSSE FORCE ÉVOLUTIVE

Phénotype O beaucoup plus sensible au choléra

Histoire du peuplement de la terre : passage du détroit de Béring il y 15-20 000 ans

CONCLUSION

La découverte d'un nouveau système de groupe sanguin peut avoir un impact bien audelà de la médecine transfusionnelle!

Physiologie Biologie cellulaire Cancérologie

Groupes

sanguins

Toxicologie

Ceci est d'autant plus vrai en cas de découverte de nouveaux phénotypes nuls, pouvant être assimilés à des "knockouts humains" et qui représentent une

ressource unique pour

d'immuno-hématologie

les laboratoires

de référence et la

recherche médicale

Microbiologie Parasitologie

Anthropologie

Hématologie fondamentale

Rare gems: null phenotypes of blood groups Blood Transfus 2010; 8: 2-4

Willy A. Flegel

"These serological gems deserve careful attention from the clinical as well as the scientific perspective"

Clinical relevance	Blood group system	Prevalence of null phenotype	Symptoms or clinical benefit, remarks	
Almana amantamatia	Diago	Vamana	Severe haemolytic anemia	
Always symptomatic or associated with disease	Diego RHAG	Very rare	•	
or associated with disease		Very rare	Haemolytic anemia, often compensated	
	Kx	Very rare	McLeod syndrome: acanthocytosis, neurological symptoms	
	GLOB	Very rare	Repeated fetal loss in some individuals, resistance to parvovirus B19	
	I	Very rare	Congenital cataracts in some alleles	
	Ch/Rg	Very rare	Systemic lupus erythematosus	
	Chric	very rare	bystemic rupus erythematosus	
Symptomatic under	Colton	Very rare	Impaired urine concentrating ability	
stress conditions	Kidd	Very rare	Impaired urine concentrating ability	
Never symptomatic, no advantage known	Rhesus	Lack of both Rhesus proteins, RhD and RhCE, very rare	Function unknown. Rarity may hint to a biological relevance of the structures missing in null phenotype.	
	Kell, Yt, Scianna, Dombrock, LW, H, Cromer, Knops, Indian, OK, JMH, GIL	Rare	Rarity may hint to a biological relevance of the structure missing in null phenotypes and to a unrecognized clinical disadvantage	
	ABO, Lewis, P, Raph, Xg	Frequent	Major unrecognized disadvantage unlikely, but significant biological relevance still possible	
Never symptomatic, advantageous under	Lutheran	Rare	Reduced thrombosis in sickle cell disease possible, acanthocytosis in "inhibitor"-type	
certain conditions	MNS and Gerbich	Frequent in affected populations	Resistance to some <i>Plasmodium falciparum</i> , mild elliptocytosis in "Leach"-type of Gerbich	
	Duffy	Frequent in affected populations	Resistance to Plasmodium vivax	

Impact clinique des phénotypes érythrocytaires nuls

System	Gene	Phonotype	Null Mutation*	Prevalence†	Examples of consequence
ABO	ABO	O Phenotype	SNPs	1	None identified although altered susceptibility e.g. to malaria, thrombosis, bleeding, cancer etc.
CH/RG	C4A, C4B	Ch/Rg-null	Part/whole deletion of <i>C4A</i> , <i>C4B</i>	5	Systemic lupus erythematosus
CO	<i>AQPI</i>	Co(a-b-)	SNPs, exon 1 deleted	5	Reduced ability to concentrate urine
CROM	CD55	Inab	SNPs	5	Possible intestinal disorders
DI	SLC4A1	Di(a-b-)	SNPs	5	Spherocytosis. Severe haemolytic anaemia; distal renal tubular acidosis
DO	ART4	Gy(a–)	SNPs, deletion of 8 nt. in exon 2	4	None identified
FY	DARC	Fy(a-b-)	SNP in GATA-1	3	Resistance to Plasmodium vivax
GE	GYPC	Yus	Deletion of exon 2	4	Resistance to some Plasmodium falciparum
		Gerbich Leach	Deletion of exon 3 Deletion of exons 3 & 4	2 5	Elliptocytosis
GIL	AQP3	GIL-	SNPs	5	None identified
GLOB	B3GALTN1	P_1^k or P_2^k	SNPs	5	Recurrent spontaneous abortions, Resistance to Parvovirus B19 and reduced susceptibility to HIV-1 (at least <i>in vitro</i>)
Н	FUT1	$O_h(Bombay)$	SNPs	4	None identified

Sjöberg Wester, E. (2010). Characterisation of weak and null phenotypes in the KEL and JK blood group systems. [Doctoral Thesis (compilation), Division of Hematology and Transfusion Medicine]. Department of Laboratory Medicine, Lund University.

Impact clinique des phénotypes érythrocytaires nuls

System symbol	Gene	Phenotype	Null Mutation*	Prevalence†	Examples of consequence
I	GCNT2	I–	SNPs	4	Congenital cataracts
IN	CD44	In(a-b-)	None identified in <i>CD44</i> •	5	Not known
JK	SLC14A1	Jk(a-b-)	SNP	5	Reduced ability to concentrate urine
JMH	SEMA7A	JMH-**	Not known	4	None identified
KEL	KEL	\mathbf{K}_0	SNP	4	None identified
KN	CRI	Helgeson	SNPs	4	Autoimmune disease e.g. systemic lupus erythematosus
XK	XK	McLeod	SNP, partial/whole deletion of gene	5	McLeod syndrome (further explained in the KEL section)
LE	FUT3	Le(a-b-)	SNPs	1	Resistance to Helicobacter pylori
LU	LU	Lu(a-b-)	SNP in LU	4	None identified
			SNPs in EKLF	5	In(Lu) phenotype (depression of LU; IN, KN and P1 antigens); dyserythropoietic anemia
			Unidentified X-linked suppressor gene		and I I antigens), dyserythroporette aneima
LW	ICAM4	LW(a-b-)	del. 10 nt. in exon 1	4	None identified
MNS	GYPA, GYPB	$M^k M^k$	Deletion of both <i>GYPA</i> and <i>GYPB</i>	5	Resistance to some Plasmodium falciparum
	GIIB	En(a-)	SNPs; deletion of GYPA	5	Resistance to some Plasmodium falciparum

Impact clinique des phénotypes érythrocytaires nuls

System	Gene		Null	Prevalence†	Examples of consequence
symbol	Phenotype	Mutation*			
		S-s-U-	Deletion of GYPB	2	Resistance to some Plasmodium falciparum
OK	BSG	Ok(a-)**	Not known	4	None identified
•	A4GALT	P2	SNPs	1	None identified although altered susceptibility to P-fimbriated <i>E.coli</i>
RAPH	CD151	MER2-	SNPs	5	Basement membrane disorders
Н	RHD, RHCE	Rh_{null}	Amorph Rh _{null} RHD deleted and SNPs in RHCE	5	Compensated haemolytic anaemia
RHAG			SNPs in <i>RHAG</i> ‡		
SC	ERMAP	SC:-1,-2,-3	SNPs	5	None identified
YT	ACHE	Yt(a-b-)	Not known	5	None identified
XG	XG, MIC2	Xg(a-)	None identified	1	None identified

^{*} SNP indicates one SNP and SNPs that more than one SNP causing the null phenotype is identified.

- 2. Frequent in populations within areas with Plasmodium falciparum.
- 3. Frequent in populations within areas with Plasmodium vivax.
- 4. Rare but with a higher prevalence in certain populations.
- 5. Very rare
- ♣ The In(a-b-) phenotype has been reported as a consequence of a mutation in EKLF.
- ** The antigen-negative phenotype is known but the null phenotype (of the same name) has not been described.
- ‡ RhAG is essential for expression of Rh-antigens, but does not carry blood group antigens.

Sjöberg Wester, E. (2010). Characterisation of weak and null phenotypes in the KEL and JK blood group systems. [Doctoral Thesis (compilation), Division of Hematology and Transfusion Medicine]. Department of Laboratory Medicine, Lund University.

^{† 1.} Frequent albeit with a varying prevalence in different populations.

MERCI POUR VOTRE ATTENTION!

CONTACT

Thierry Peyrard

thierry.peyrard@efs.sante.fr

+33 1 55 25 12 01